Abstract

• Asymmetric nanofiltration PVC hollow fiber membranes were fabricated via dry-wet spinning technique. • Delayed demixing was achieved by addition of high molecular weigh PVP. • Volatile solvent evaporation resulted in dense selective layer. • The effect of fabrication parameters were investigated in order to introduce best-suited membrane. • The effect of DS concentration and temperature were studied by means of Flux and SRSF. PVC hollow fiber (HF) membrane for forward osmosis (FO) application as a potential candidate for water desalination was fabricated by altering the spinning conditions. High molecular weight polyvinylpyrrolidone (PVP) was used as a blending additive to control the phase inversion process by increasing viscosity leading to delayed demixing as observed on the ternary phase diagram and confirmed by the simulation results, and forming dense barrier layer structure by providing chain entanglements with the PVC matrix. PVP/PVC ratio of 5/100 was proved to offer suited membrane morphology and selective layer. Different air gap distances and bore fluid flow rates were investigated to achieve proper fabrication parameters. The prepared membranes presented high flux and salt rejection in nanofiltration (NF) and FO tests. The best-suited membrane demonstrated the structural parameter of 389 µm with a narrow pore size distribution and a molecular weight cut-off of 490 Da. In different draw solution (DS) concentrations, it was observed that the membranes perform well in all conditions. Considering the PVC-PVP chain entanglements and mobility and the possibility of PVP being washed away, the membranes’ performance at different temperatures indicated that 25–45 °C would be the safe operating range for the fabricated membranes with stable values of 31.0–33.4 LMH and 0.17–0.18 (FO mode) and 33.0–33.4 LMH and 0.23–0.24 (PRO mode) for water flux and specific reverse salt flux.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.