Abstract

With the background of thermal protection applications of anti-oxidation carbon fiber reinforced composites, carbon fiber reinforced ultra-high temperatureceramics with homogeneous disperse complex matrix of C-ZrB2-SiC (C/C-ZrB2-SiC) was prepared. Carbon fiber performs were deposited with pyrolytic carbon by chemical vapor infiltration method. Subsequently, the composite precursors were prepared by completely mutually dissolving of ZrB2 polymeric precursor and polycarbosilane dimethylbenzene solution. Then the nano-dispersed ZrB2-SiC composite ceramic was introduced into the C/C preforms by polymer impregnant and pyrolysis process. The C/C-ZrB2-SiC composite shows excellent ablation behavior with the ablating rate of 8*10-4mm/s. The microstructural and compositional characterizations of the C/C-ZrB2-SiC composites indicates that ZrB2 nanoparticle is distributed homogeneously in the continuous SiC phase, which is beneficial to enhance ultra-high temperature ablation resistance of the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.