Abstract
The double-network hydrogel comprises two asymmetrically structured cross-linked networks, demonstrating exceptional mechanical properties and possessing significant potential for application in the field of flexible sensors. However, conventional hydrogels primarily disperse in water as a medium and continuously lose moisture in natural environments, rendering them incapable of retaining hydration over extended periods and unsuitable for utilization under low-temperature conditions. In this study, we devised an organic hydrogel based on polyacrylamide (PAM), sodium alginate (SA), and dimethyl sulfoxide (DMSO). Through hydrogen bonding interactions among DMSO molecules, polyacrylamide, and sodium alginate, this organic hydrogel not only exhibits anti-drying and anti-freezing properties but also demonstrates self-healing characteristics. Moreover, the organic hydrogel showcases remarkable mechanical properties and conductivity capabilities that render it suitable for constructing flexible strain sensors to monitor human movements such as finger bending, elbow flexion, knee joint bending, and ankle extension. Additionally, the sensor exhibits excellent stability and durability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.