Abstract

Abstract The inhibition effect of three inhibitors with different chain lengths of their ether groups on Q235 steel in 0.5 M HCl solution at 318 K was determined by means of weight loss measureme nt, electrochemical methods (Tafel and EIS) and surface analysis (SEM). Moreover, the further study of corrosion inhibition mechanism was also conducted by computational methods (Quantum chemical calculations and Molecular dynamics simulations). Results reveal that the three inhibitors exhibit an excellent inhibition performance for carbon steel, and the corrosion inhibition efficiency of the three inhibitors increases with the increase of the chain length, which favors the formation of a protection film adsorbed on the surface. Analysis of polarization data informs that the adsorption type of three inhibitors basically obeys the Langmuir monolaye r adsorption, which is mainly of chemisorptive nature. Computational methods also tell that the three inhibitors possess a high reactivity and strong interaction with the iron surface, furthermore, the interaction is increased with the increase of the chain length of three inhibitors. The conclusion is in good agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.