Abstract
Globally, antibiotic abuse, organic contamination, and excessive heavy metal ion pollution pose serious threats to human health. In this case, ratiometric fluorescent probes can eliminate the errors caused by environmental factors and provide more accurate detection results than single-emission intensity nanoprobes. Accordingly, based on the excellent biocompatibility and abundant surface functional groups of carbon quantum dots (CQDs) and the properties of large Stokes shifts and narrow emission bands of rare earth ions (RE3+), RE-CQD fluorescent probes have attracted widespread attention. Herein, firstly we review the combination of carbon quantum dots with rare earth ions (rare earth complexes) using various functionalization approaches to improve the defects of rare earth complexes and realize the functionalization of carbon quantum dots and their applications in many fields, such as biology and environmental science. In addition, we classify the methods for the synthesis of RE-CQD hybrids into three groups according to the different binding modes of the RE and CQDs, including doping, covalent grafting, and direct coordination. The excellent properties of these fluorescent probes are also briefly described. Finally, a comprehensive overview of the important applications of RE-CQD fluorescent probes in the fields of public safety sensing, chemical sensing, biomedical sensing, temperature sensing, and pH sensing is presented. In this review, the recent research progress in the field of ratiometric fluorescence sensing based on carbon quantum dots and rare earth ions is summarized and an outlook on the future development of RE-CQD fluorescent probes regarding their construction and potential applications is provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.