Abstract

Technological advances in mass spectrometry (MS), liquid chromatography (LC) separations, nuclear magnetic resonance (NMR) spectroscopy, and big data analytics have made possible studying metabolism at an "omics" or systems level. Here, we applied a multiplatform (NMR + LC-MS) metabolomics approach to the study of preoperative metabolic alterations associated with prostate cancer recurrence. Thus far, predicting which patients will recur even after radical prostatectomy has not been possible. Correlation analysis on metabolite abundances detected on serum samples collected prior to surgery from prostate cancer patients ( n = 40 remission vs n = 40 recurrence) showed significant alterations in a number of pathways, including amino acid metabolism, purine and pyrimidine synthesis, tricarboxylic acid cycle, tryptophan catabolism, glucose, and lactate. Lipidomics experiments indicated higher lipid abundances on recurrent patients for a number of classes that included triglycerides, lysophosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, diglycerides, acyl carnitines, and ceramides. Machine learning approaches led to the selection of a 20-metabolite panel from a single preoperative blood sample that enabled prediction of recurrence with 92.6% accuracy, 94.4% sensitivity, and 91.9% specificity under cross-validation conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.