Abstract

The shape of skin flaps is only described by swatches for preoperative design because of the irregular shape of skin wounds caused by trauma in the clinic. The method is rough, and the flaps cut often cannot match the wounds and affect their appearance. Computer-aided design technology helps to attain precise results in less time. This study proposes a skin wound morphological flattening algorithm based on hierarchical values. First, the skin wound is scanned by three-dimensional (3D) scanning technology to obtain a spatial mesh model consisting of triangular cells, and the mesh model is layered with a hierarchical value. Then, the layered mesh is topologically mapped to the plane. Subsequently, the stress and strain of the skin are simulated using a mechanical method, and the shape of the flattened skin wound is optimized layer by layer. Finally, the multiresolution smoothing technique is used to smooth the developed boundary contour and fit the curve to obtain a guidance plan for preoperative flap design. The results of the study showed that this method can accurately determine the shape of the skin wounds and quantitatively analyze the preoperative design results of the skin flaps. The average error of the area and edge length after flattening was reduced to less than 10%. The work is designed to realize the precise and individualized design of flap schemes before operation and to help standardize the preoperative design process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.