Abstract

Prenatal exposure to serotonin reuptake inhibitor (SRI) antidepressants and maternal depression may affect prefrontal cognitive skills (executive functions; EFs) including self-control, working memory and cognitive flexibility. We examined long-term effects of prenatal SRI exposure on EFs to determine whether effects are moderated by maternal mood and/or genetic variations in SLC6A4 (a gene that codes for the serotonin transporter [5-HTT] central to the regulation of synaptic serotonin levels and behavior). Children who were exposed to SRIs prenatally (SRI-exposed N = 26) and non-exposed (N = 38) were studied at age 6 years (M = 6.3; SD = 0.5) using the Hearts & Flowers task (H&F) to assess EFs. Maternal mood was measured during pregnancy (3rd trimester) and when the child was age 6 years (Hamilton Depression Scale). Parent reports of child behavior were also obtained (MacArthur Health & Behavior Questionnaire). Parents of prenatally SRI-exposed children reported fewer child externalizing and inattentive (ADHD) behaviors. Generalized estimate equation modeling showed a significant 3-way interaction between prenatal SRI exposure, SLC6A4 variant, and maternal mood at the 6-year time-point on H&F accuracy. For prenatally SRI-exposed children, regardless of maternal mood, the H&F accuracy of children with reduced 5HTT expression (a short [S] allele) remained stable. Even with increasing maternal depressive symptoms (though all below clinical threshold), EFs of children with at least one short allele were comparable to children with the same genotype whose mothers reported few if any depressive symptoms—in this sense they showed resilience. Children with two long (L) alleles were more sensitive to context. When their mothers had few depressive symptoms, LL children showed extremely good EF performance—better than any other group. When their mothers reported more depressive symptoms, LL children's EF performance was worse than that of any other group. In the face of a mother with a more depressed mood, EFs were best preserved in children prenatally exposed to SRIs and with at least one short SLC6A4 allele. Yet, prenatally-exposed LL children hold out promise of possibly superior EF if their mother's mood remains euthymic or improves.

Highlights

  • Serotonin (5-HT) and its multiple receptors are highly expressed in prefrontal cortex (PFC) and play key roles in influencing complex cognition and resilience to stress (Canli et al, 2005; Lesch, 2007; Reuter et al, 2007; Homberg and Lesch, 2011)

  • We examined long-term effects of prenatal serotonin reuptake inhibitor (SRI) exposure on executive functions (EFs) to determine whether effects are moderated by maternal mood and/or genetic variations in SLC6A4

  • PARTICIPANTS Children in this study are part of a longitudinal cohort study examining the effects of prenatal exposure to SRIs and maternal mood disturbances in 98 mothers recruited during their second trimester of pregnancy

Read more

Summary

Introduction

Serotonin (5-HT) and its multiple receptors are highly expressed in prefrontal cortex (PFC) and play key roles in influencing complex cognition and resilience to stress (Canli et al, 2005; Lesch, 2007; Reuter et al, 2007; Homberg and Lesch, 2011). Critical cognitive capacities that rely on PFC and related structures (Miller and Cohen, 2001; Braver et al, 2002; Petrides, 2005; Champod and Petrides, 2007; Zanto et al, 2011) are termed executive functions (EFs), and include abilities to (1) focus, sustain and shift attention (executive attention), (2) resist the pulls and temptations of external stimuli, our emotions, or engrained behavioral tendencies, inhibit acting impulsively, taking a moment to make a more considered response (inhibitory control), (3) hold information in mind and work with it, such as updating one’s thinking or planning when given new information, considering alternatives, or mentally relating pieces of information to one other (working memory), and (4) creative problem-solving, flexibly adjusting to changed demands, priorities, new obstacles or opportunities (cognitive flexibility; Miyake et al, 2000; Diamond, 2013). Little is known about how developmental changes in 5-HT influence early cognitive development in humans during childhood

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.