Abstract

Gene therapy has traditionally involved the delivery of exogenous genetic material to a cell-most commonly to replace defective genes causing monogenic disorders. This allows cells to produce proteins that are otherwise absent in sufficient quantities, ideally for a therapeutic purpose. Since its inception over 40 years ago, the field of gene therapy has significantly expanded and now includes targeted gene editing strategies, including, but not limited to, clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.