Abstract

The increasing lifetime of the population on a world-wide scale over the last decades has led to a significant growth in the use of surgical implants for replacement of bones and teeth in affected patients. Other factors, such as scientific-technological development and more frequent exposure of individuals to trauma risk, have also contributed to this general trend. Metallic materials designed for applications in surgical implants, no matter whether orthopedic or dental, must show a group of properties in which biocompatibility, mechanical strength, and resistance to degradation (by wear or corrosion) are of primary importance. In order to reach these aims, orthopedic materials must fulfill certain requirements, usually specified in standards. These requirements include chemical composition, microstructure, and even macrographic appearances. In the present work, three cases of implant failure are presented. These cases demonstrate the most frequent causes of premature failure in orthopedic implants: inadequate surgical procedures and processing/design errors. Evaluation techniques, including optical and scanning electron microscopy (SEM), were used to evaluate macroscopic and microstructural aspects of the failed implants, and the chemical composition of each material was analyzed. These evaluations showed that design errors and improper surgical procedures of outright violation of standards were the cause of the failures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.