Abstract

Abstract The bio-tribocorrosion behavior of newly developed near β-types Ti-15Nb and Ti-15Mo alloys was investigated in Phosphate-Buffered Saline (PBS) under different loads. Open-Circuit Potential (OCP), friction coefficient, wear volume and wear rate were evaluated. The results revealed that Ti-15Nb alloy exhibited lower wear rate, lower friction coefficient and better corrosion resistance during tribocorrosion than the Ti-15Mo alloy. This can be attributed to the diffusion of Nb which increases the repassivation rate (formation of a protective layer) in the Ti-15Nb alloy. In contrast Ti-15Mo shows a significantly higher rate of chemical reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.