Abstract

Preliminary results of a simulation effort to evaluate the requirements and feasibility of the global positioning system (GPS) as a civil air navigation system are presented. Evaluation is made of GPS requirements, from operational considerations, such as application to nonprecision approaches. The conceptual low-cost GPS receiver simulated here does not correct for the ionospheric or trophospheric delay, is sequential in nature, tracks only four satellites, and is not mechanized to make independent range rate measurements based on the Doppler shift of the GPS carrier frequency. The proposed GPS system has significantly different performance characteristics from the presently used VHF omnidirectional range (VOR) solidus distance-measuring equipment (DME) system. The GPS is a low signal level system and many have a relatively slow data rate due to the low-cost sequential receiver design. The results indicate that although the conceptual low-cost GPS receiver/ navigator is potentially more accurate than a VOR, the accuracy may degrade during aircraft turns and satellite shielding periods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.