Abstract
The offshore wind industry is already exploiting near shore sites, using bottom fixed support structures, and is moving toward further and deeper sites: around 100 km from the coast and in 50–150 m water depth. As already happened for the oil and gas offshore industry in the 1960s, the floating support structure option for 5 MW (and future 7–10 MW) offshore wind turbines is becoming not only a technically feasible but also an economically viable solution with respect to the fixed solution. In the present article, taking as input the NREL 5 MW turbine and the Dogger Bank site, in the North Sea, seven preliminary floating support structure concepts have been investigated, and compared through a preliminary techno-economic analysis. Then the optimum concept among the seven, the tri-floater configuration, has been further developed and refined through hydrostatic, hydrodynamic, and structural analyses. Due to the novelty of this research field, there are no established guidelines, recommended practices, or standards to design floating support structures: this work presents a relatively simple and quick methodology to use in the conceptual and preliminary design phase, using and adapting the standards developed for oil and gas offshore floating structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.