Abstract

We hypothesized that pregnancy modulates receptor-mediated responses of the uterine artery (UA) by altering G protein activation or coupling. Relaxation and contraction to NaF (0.5-11.5 mM), acetylcholine (10(-9)-10(-5) M), and bradykinin (10(-12)-3 x 10(-5) M) were measured in isolated UA of pregnant and nonpregnant guinea pigs. Responses were measured in the presence and absence of either cholera toxin (2 microg/ml) or pertussis toxin (Galpha(s) and Galpha(i) inhibitors, respectively). NaF relaxation was endothelium dependent and nitro-L-arginine sensitive (a nitric oxide synthase inhibitor). Relaxation to NaF, acetylcholine, and bradykinin were potentiated by pregnancy. Cholera but not pertussis toxin increased relaxation to acetylcholine and bradykinin in UA from nonpregnant animals, had no effect in UA from pregnant animals, and abolished the pregnancy-induced differences in acetylcholine relaxation. Cholera toxin potentiated the bradykinin-induced contraction of UA of both pregnant and nonpregnant animals, whereas pertussis toxin inhibited contraction of UA from pregnant animals only. Therefore, pregnancy may enhance agonist-stimulated endothelium-dependent relaxation and bradykinin-induced contraction of UA by inhibiting GTPase activity or enhancing Galpha(s) but not Galpha(i) activation in pregnant animals. Thus the diverse effects of pregnancy on UA responsiveness may result from hormonal modulation of G proteins coupled to their specific receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.