Abstract
The influence of TRH and TSH injections on plasma concentrations of tri-iodothyronine (T3) and thyroxine (T4) was investigated in neonatal (injection within 0.5 h after delivery) and growing lambs and in normal, pregnant and lactating adult ewes (all 2 years old and originating from Suffolk, Milksheep and Texal crossbreeds). Neonatal lambs had higher levels of T3, T4 and GH compared with all other groups, whereas prolactin and TSH were higher in lactating ewes. In all animals, injections of TRH increased plasma concentrations of prolactin and TSH after 15 min but not of GH at any time. Small increases in T3 and T4 were observed in neonatal lambs, without any effect on the T3 and T4 ratio, after prolactin administration, whereas prolactin did not influence plasma concentrations of T3 or T4 in all other experimental groups. Similar results for thyroid hormones were obtained after TRH or TSH injections. It was therefore concluded that the effects observed after TRH challenge were mediated by the release of TSH. With the possible exception of neonatal lambs, plasma concentrations of T3 after administration of TRH or TSH were always increased before those of T4; the increase in T3 occurred within 0.5-1 h compared with 2-4 h for T4 in all experimental groups. This resulted in an increased ratio of plasma T3 to T4 up to 4 h after injection. It is concluded that, in sheep, TRH and TSH preferentially release T3 from the thyroid gland probably by a stimulatory effect of TSH on the intrathyroidal conversion of T3 to T4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.