Abstract

Ice formation on solid surfaces is a ubiquitous process in our daily life, and ice orientation plays a critical role in anti-icing/deicing, organ cryo-preservation, and material fabrication. Although previous studies have shown that surface grooves can regulate the orientation of ice crystals, whether the parallel or perpendicular alignment to the grooves is still under debate. Here, we systematically investigate ice formation and its oriented growth on grooved surfaces through both in situ observation and theoretical simulation, and discover a remarkable size effect of the grooves. With the designability of surface groove patterns, the preferential growth of ice crystals is programmed for the fabrication of a crisscross-aligned graphene aerogel with large negative Poisson’s ratio. In addition, the size effect provides guidance for the design and fabrication of solid surfaces where the effective control of ice orientation is highly desired, such as efficient deicing, long time organ cryo-preservation, and ice-templated materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.