Abstract

The formation of phospholipid hydroperoxides was monitored in human red blood cell (RBC) membranes that had been peroxidized with an azo initiator. Peroxidation of RBC membranes caused a profound decrease in the amount of polyunsaturated fatty acids and concomitantly hydroperoxides, as primary products of peroxidation, appeared in the phospholipids. Hydroperoxides were predominantly generated in choline glycerophospholipid (CGP), while the extent of formation of ethanolamine glycerophospholipid (EGP) hydroperoxides was low and their presence was transient. Hydroxy and hydroperoxy moieties in CGP were identified as 9-hydroxy and 13-hydroxy octadecanoic acid, derived from linoleic acid, by gas chromatography-mass spectrometric analysis. No consistent generation of hydroperoxide from arachidonic acid was evident in CGP. The CGP-hydroperoxide accounted for approximately 76% of linoleic acid consumed during peroxidation of RBC membranes. The prominent generation of phospholipid hydroperoxides was observed in the linoleic acid-rich membranes from rabbit RBC, indicating that the level of linoleic acid in phospholipids determins, in part, the extent of formation of phospholipid hydroperoxides. Aldehydic phospholipids, as secondary products of peroxidation, were detected in oxidized membranes. EGP was the most prominent aldehydic phospholipid, while negligible amounts of aldehydic CGP were formed. This study indicates that the process of oxidation of individual phospholipids clearly differs among phospholipids and depends on the structure of each.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.