Abstract

We report the interaction between active non-spherical swimmers and a long-standing flow structure, Lagrangian coherent structures (LCSs), in a weakly turbulent two-dimensional flow. Using a hybrid experimental–numerical model, we show that rod-like swimmers have a much stronger and more robust preferential alignment with attracting LCSs than with repelling LCSs. Tracing the swimmers' Lagrangian trajectories, we reveal that the preferential alignment is the consequence of the competition between the intrinsic mobility of the swimmers and the reorientation ability of the strain rate near the attracting LCSs. The strong preferential alignment with attracting LCSs further leads to a strong accumulation near the attracting LCSs. Moreover, we show the self-similarity of this accumulation, which reduces the intricate interaction to only one control parameter. Our results generically elucidate the interaction between active and non-spherical swimmers with LCSs and, thus, can be widely applied to many natural and engineered fluids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.