Abstract

The following scheduling problem is studied: We are given a set of tasks with release times, deadlines, and profit rates. The objective is to determine a 1-processor preemptive schedule of the given tasks that maximizes the overall profit. In the standard model, each completed task brings profit, while non-completed tasks do not. In the metered model, a task brings profit proportional to the execution time even if not completed. For the metered task model, we present an efficient offline algorithm and improve both the lower and upper bounds on the competitive ratio of online algorithms. Furthermore, we prove three lower bound results concerning resource augmentation in both models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.