Abstract
This paper describes navigation systems for autonomous mobile robots taking part in the real-world Tsukuba Challenge 2013 robot competition. Tsukuba Challenge 2013 enables any information on the route to be collected beforehand and used on the day of the challenge. At the same time, however, autonomous mobile robots should function appropriately in daily human life even in areas where they have never been before. System thus need not capture pre-driving details. We analyzed traverses in complex urban areas without prior environmental information using light detection and ranging (LIDAR). We also determined robot status, such as its position and orientation using the gauss maps derived from LIDAR without gyro sensors. Dead reckoning was combined with wheel odometry and orientation from above. We corrected 2D robot poses by matching electronics maps from the Web. Because drift inevitably causes errors, slippage and failure, etc., our robot also traced waypoints derived beforehand from the same electronics map, so localization is consistent even if we do not drive through an area ahead of time. Trajectory candidates are generated along global planning routes based on these waypoints and an optimal trajectory is selected. Tsukuba Challenge 2013 required that robots find specified human targets indicated by features released on the Web. To find the target correctly without driving in Tsukuba beforehand, we searched for point cloud clusters similar to specified human targets based on predefined features. These point clouds were then projected on the camera image at the time, and we extracted points of interest such as SURF to apply fast appearance-based mapping (FAB-MAP). This enabled us to find specified targets highly accurately. To demonstrate the feasibility of our system, experiments were conducted over our university route and over that in the Tsukuba Challenge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.