Abstract

Annotation of twilight zone protein sequences has been hitherto attempted by predicting the fold of the given sequence. We report here the PredictSuperFam-PSS-3D1D method, which predicts the superfamily for a given twilight zone (TZ) protein sequence. Earlier, we have reported that adding predicted secondary structure information into the threading methods could improve fold prediction especially for the TZ protein sequences. In this study, we have analysed the application of the same method to predict superfamilies. Here, in this method, the twilight zone protein sequence is threaded with the 3D1D profiles of the known protein superfamilies library. In addition, weightage for the predicted secondary structure (PSS) is also employed. The performance of the method is benchmarked with twilight zone sequences. In the benchmarks, 62 and 65 percentages of superfamily predictions are obtained with GOR IV and NPS@ predicted secondary structures, respectively. Receiver Operating Characteristic (ROC) curves indicate that the method is sensitive in predicting the superfamilies. A case study has been conducted with the hypothetical protein sequences of Schistosoma haematobium (Blood Fluke) using this method and the results are analyzed. Our method predicts the superfamily for TZ sequences for which, methods based on sequence similarity alone are inadequate. A web server has been developed for our method and it is available online at http://bioinfo.bdu.ac.in/psfpss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.