Abstract

Hyponatremia can worsen the outcomes of patients with liver cirrhosis. However, it remains unclear about how to predict the risk of death in cirrhotic patients with hyponatremia. Patients with liver cirrhosis and hyponatremia were screened. Eligible patients were randomly divided into the training (n = 472) and validation (n = 471) cohorts. In the training cohort, the independent predictors for in-hospital death were identified by logistic regression analyses. Odds ratios (ORs) were calculated. An artificial neural network (ANN) model was established in the training cohort. Areas under curve (AUCs) of ANN model, Child-Pugh, model for end-stage liver disease (MELD), and MELD-Na scores were calculated by receiver operating characteristic curve analyses. In multivariate logistic regression analyses, ascites (OR = 2.705, P = 0.042), total bilirubin (OR = 1.004, P = 0.003), serum creatinine (OR = 1.004, P = 0.017), and international normalized ratio (OR = 1.457, P = 0.005) were independently associated with in-hospital death. Based on the four variables, an ANN model was established. Its AUC was 0.865 and 0.810 in the training and validation cohorts, respectively, which was significantly larger than those of Child-Pugh (AUC = 0.757), MELD (AUC = 0.765), and MELD-Na (AUC = 0.769) scores. An ANN model has been developed and validated for the prediction of in-hospital death in patients with liver cirrhosis and hyponatremia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.