Abstract

We demonstrate an ab-initio predictive approach to computing the thermal conductivity ($\kappa$) of InAs/GaAs superlattices (SLs) of varying period, thickness, and composition. Our new experimental results illustrate how this method can yield good agreement with experiment when realistic composition profiles are used as inputs for the theoretical model. Due to intrinsic limitations to the InAs thickness than can be grown, bulk-like SLs show limited sensitivity to the details of their composition profile, but the situation changes significantly when finite-thickness effects are considered. If In segregation could be minimized during the growth process, SLs with significantly higher $\kappa$ than that of the random alloy with the same composition would be obtained, with the potential to improve heat dissipation in InAs/GaAs-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.