Abstract

Biophysical cues, such as nanotopographies of extracellular matrix (ECM), are key cell regulators for direct cell reprogramming. Therefore, high-throughput methods capable of systematically screening a wide range of biophysical cue-regulated cell reprogramming are increasingly needed for tissue engineering and regenerative medicine. Here, we report the development of a dynamic laser interference lithography (DIL) to generate large-scale combinatorial biophysical cue (CBC) arrays with diverse micro/nanostructures at higher complexities than most current arrays. Using CBC arrays, a high-throughput cell mapping method is further demonstrated for the systematic investigation of biophysical cue-mediated direct cell reprogramming. This CBC array-based high-throughput cell screening approach facilitates the rapid identification of unconventional hierarchical nanopatterns that induce the direct reprogramming of human fibroblasts into neurons through epigenetic modulation mechanisms. In this way, we successfully demonstrate DIL for generating highly complex CBC arrays and establish CBC array-based cell screening as a valuable strategy for systematically investigating the role of biophysical cues in cell reprogramming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.