Abstract
Wear is induced when two surfaces are in relative motion. The wear phenomenon is mostly data-driven and affected by various parameters such as load, sliding velocity, sliding distance, interface temperature, surface roughness, etc. Hence, it is difficult to predict the wear rate of interacting surfaces from fundamental physics principles. The machine learning (ML) approach has not only made it possible to establish the relation between the operating parameters and wear but also helps in predicting the behavior of the material in polymer tribological applications. In this study, an attempt is made to apply different machine learning algorithms to the experimental data for the prediction of the specific wear rate of glass-filled PTFE (Polytetrafluoroethylene) composite. Orthogonal array L25 is used for experimentation for evaluating the specific wear rate of glass-filled PTFE with variations in the operating parameters such as applied load, sliding velocity, and sliding distance. The experimental data are analysed using ML algorithms such as linear regression (LR), gradient boosting (GB), and random forest (RF). The R2 value is obtained as 0.91, 0.97, and 0.94 for LR, GB, and RF, respectively. The R2 value of the GB model is the highest among the models, close to 1.0, indicating an almost perfect fit on the experimental data. Pearson's correlation analysis reveals that load and sliding distance have a considerable impact on specific wear rate as compared to sliding velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.