Abstract

Three-dimensional steady and unsteady vortex-dominated flows around sharp-edged delta wings are considered in this paper. The problem is formulated by using the unsteady conservative Euler equations for the flow relative motion with respect to a moving frame of reference. An implicit approximately-factored finite volume scheme is used to solve the resulting equations on a three-dimensional computational grid which is generated by using a modified Joukowski transformation in cross-flow planes at the grid chord stations. The scheme is applied to a delta wing undergoing pitching oscillation around a large angle of attack. The initial conditions correspond to a steady flow around a delta wing of aspect ratio of one, freestream Mach number of 0.3 and mean angle of attack of 20.5. The steady flow results are compared with those of an explicit computational scheme and the experimental data, and they are in good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.