Abstract

In order to overcome the inaccuracy of current research results of traffic flow prediction, this paper proposes a prediction method for traffic flow with small time granularity at intersection based on probability network. This method takes one minute as time granularity, collects traffic data such as cross-section flow, section traffic flow velocity data, traffic density, road occupancy, section delay and steering ratio by using RFID technology, and analyzes and processes the data. By introducing Bayesian network in probabilistic network and combining K-nearest neighbor method, historical data and predicted traffic flow state are classified to realize the prediction of traffic flow with small time granularity at intersections. The experimental results show that this method has high prediction accuracy and reliability, and is a feasible traffic flow prediction method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.