Abstract
The state variables such as product formation could provide important information for the optimisation of fermentation processes. Since the kinetic modelling is difficult for bioprocesses, the product formation is predicted by integrating support vector machine (SVM) with the AdaBoost algorithm. The AdaBoost algorithm is used for adaptively boosting the performance of SVM weak learners. The prediction approach is tested by using 2-keto-L-gulonic acid (2-KGA) cultivation as an example. The validation results using the data from industrial 2-KGA cultivation demonstrate that the prediction approach has good generalisation performance and noise tolerance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of System Control and Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.