Abstract
In this paper, a robust technique is presented to predict the peak load and crack initiation energy of dynamic brittle fracture in X70 steel pipes using an improved artificial neural network (IANN). The main objective is to investigate the behaviour of API X70 steel based on two experimental tests, namely Drop Weight Tear Test (DWTT) and the Charpy V-notch impact (CVN), for steel pipe specimens. The mechanical properties in the brittle fracture behaviour of API X70 steel pipes are predicted utilizing numerical approaches with different crack lengths. Next, to simulate the impact of API X70 steel pipes at lower temperatures through a numerical approach, a cohesive approach using the extended Finite Element Method (XFEM) is used. The data obtained are used as input for the proposed IANN using Balancing Composite Motion Optimization (BCMO), Particle Swarm Optimization (PSO) and Jaya optimization algorithms, to predict the peak load values and crack initiation energy of dynamic brittle fractures in API X70 steel with different crack lengths. The results show the effectiveness of ANN-PSO and ANN-BCMO based on the convergence of the results and the accuracy of the prediction of the peak load and crack initiation energy. Note that, the source codes are publicly available at https://github.com/Samir-Khatir/JAYA-ANN.git.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.