Abstract
The Hildebrand solubility parameter ( δ) provides a numerical estimate of the degree of interaction between materials, and can be a good indication of solubility. In this work, a small number of physicochemical variables were appropriately selected from a pool of Dragon descriptors and correlated with the Hildebrand thermodynamic parameter of compounds previously studied as organic solvents of buckminsterfullerene (C 60), using multiple linear regression and support vector machines. Models were validated using an external set of compounds and the statistical parameters obtained revealed the high prediction performance of all models, especially the one based on nonlinear regression. These findings provide useful information about which solvent and corresponding characteristics are important for solubility studies of e.g. this increasingly useful carbon allotrope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.