Abstract

A modeling approach to predict and enhance understanding of the dispersion phenomenon is presented. The discrete/distinct element method is adopted to study the behavior of single spherical agglomerates, immersed in a simple shear flow field, in response to shearing under steady or dynamic/oscillatory flow conditions. The effects of hydrodynamic forces, which result from both the straining and rotating components of the flow, and cohesive forces of interaction, comprised of short-range van der Waals attractive and Born repulsive forces, are considered. The results of simulated distortion and dispersion of nano-size silica agglomerates in response to steady shearing are used to demonstrate the functionality of the three-dimensional simulation. Simulated results are found to be in good agreement with reported experimental trends. The current model allows us to probe and predict the dispersion phenomenon as a function of processing conditions, agglomerate structure/morphology, and material properties and interaction forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.