Abstract

Failure in sheet metal forming can occur by necking, fracture or wrinkling. By using a forming limit diagram (FLD) as a powerful tool to prevent sheets metal failures in the forming process, provides parameters controlling throughout forming. There are different developed methods for predicting FLDs, which estimate sheet metal forming strains limits. Assessment of FLD estimation reveals that there is a dependency between the effect of several factors containing normal stress, shear stress, sheet thickness, mechanical properties, metallurgical properties, yield function, strain path, and bending with formability. In this research, the effects of bending via two finite element models are investigated. In the first method, the out-of-plane deformation is applied by increasing punch displacement to study the effects of bending. In the second method, the effect of bending is investigated via changing punch diameter (25, 50, 70 and, 100 mm). The Marciniak–Kuczynski (M–K) theory is used to predict the time of localized necking in finite element simulations. Furthermore, a novel method for the determination of the inhomogeneity coefficient is presented in M–K model to simulate the groove width for M–K model. To verify finite element simulation results, Nakazima tests with 50 and 100 mm punch diameters were done as experimental studies. The comparison of experimental results and finite element analysis illustrates that the increasing bending or the out-of-plane loading can improve formability. At the end, the effect of bending on FLD is reported as an equation based on minor and major strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.