Abstract

AbstractA relatively novel technique, artificial neural networks (ANN), is used in predicting the stability of crown pillars left over large excavations. Data for the training and verification of the networks were obtained from the literature. Four artificial networks, based on two different architectures, were used. The networks used different numbers of input parameters to predict the stability or failure of crown pillars. Multi‐layer perceptron networks using mine type, dip of orebody, overburden thickness, pillar thickness, pillar length, stope height, backfill height, Rock Mass Rating (RMR) of the host rock and RMR of the orebody showed excellent performance in training and verification. Adding three more variables, namely pillar width, rock density and pillar thickness to width ratio, showed symptoms of over‐learning without degrading performance significantly. Radial basis function networks were capable of predicting crown pillar behaviour on the basis of few input functions. It was shown that mine type, dip and pillar thickness to width ratio can be used for a preliminary estimation of stability. Copyright © 2006 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.