Abstract

Yield prediction is important for agricultural management, food security warning and food trade policy. Remote sensing has been a useful tool for predicting crop yields. In this study, a modified daily process-based ecosystem model (the Boreal Ecosystem Productivity Simulator) is employed in conjunction with land cover and leaf area index (LAI) products from MODIS to predict summer grain crop yields in the northern area of the Yangtze River in the Jiangsu Province, China. The model was driven by soil texture, land cover, daily meteorological and MODIS LAI data for 2004–2006. Simulated growing season net primary productivity (NPP) of summer grain crops (November–May) and census data of crop yields in 2004 were used to derive the county-level harvest index, which is then used in conjunction with simulated NPP to predict crop yields in 2005 and 2006. The model captures 89 % and 88 % of variations in crop yields at county-level compared with census data in 2005 and 2006, respectively. The root mean square errors are 265 and 277 kg ha−1 in these two years. The results show the usefulness of a process-based model driven by remote sensing in predicting crop yields. In such predictions, the considerable spatial variability of the harvest index should be taken into consideration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.