Abstract
Abstract In this work we analyze the behavior of a nonlinear dynamical system using a probabilistic approach. We focus on the coexistence of solutions and we check how the changes in the parameters of excitation influence the dynamics of the system. For the demonstration we use the Duffing oscillator with the tuned mass absorber. We mention the numerous attractors present in such a system and describe how they were found with the method based on the basin stability concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.