Abstract

Modelling of skin sensitization data of 255 diverse compounds and 450 calculated descriptors was performed to develop global predictive classification models that are applicable to whole chemical space. With this aim, we employed two automated procedures, (a) D-optimal design to select optimal members of the training and test sets and (b) k-Nearest Neighbour classification (kNN) method along with Genetic Algorithms (GA-kNN Classification) to select significant and independent descriptors in order to build the models. This methodology helped us to derive multiple models, M1–M5, that are stable and robust. The best among them, model M1 (CCR train = 84.3%, CCR test = 87.2% and CCR ext = 80.4%), is based on six neighbours and nine descriptors and further suggests that: (a) it is stable and robust and performs better than the reported models in literature, and (b) the combination of D-optimal design and GA-kNN classification approach is a very promising approach. Consensus prediction based on the models M1–M5 improved the CCR of training, test and external validation datasets by 3.8%, 4.45% and 3.85%, respectively, over M1. From the analysis of the physical meaning of the selected descriptors, it is inferred that the skin sensitization potential of small organic compounds can be accurately predicted using calculated descriptors that code for the following fundamental properties: (i) lipophilicity, (ii) atomic polarizability, (iii) shape, (iii) electrostatic interactions, and (iv) chemical reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.