Abstract

In this paper, to interpret the cost structure of decentralized wastewater treatment plants (DWWTPs) in rural regions, a simple nonparametric regression algorithm known as multivariate adaptive regression spline (MARS) was proposed and applied to simulate the construction cost (CC), operation and maintenance cost (OMC), and total cost (TC). The effects of design treatment capacity (DTC), removal efficiency of chemical oxygen demand (RCOD), and removal efficiency of ammonia nitrogen (RNH3-N) on the cost functions of CC, OMC, and TC were analyzed in detail. The results indicated that: (1) DTC is the most important parameter to determine cost structure with relative importance of 100%, followed by RCOD and RNH3-N with relative importance of 16.55%, and 9.75%, respectively; (2) when DTC is less than 5 m3/d, the slopes of CC and TC on DTC are constants of 1.923 and 1.809, respectively, with no relationship with RCOD and RNH3-N; (3) when DTC is less than 20 m3/d, the OMC is a constant of 435 RMB/year; and (4) in other cases, CC, OMC, and TC are related to RCOD and RNH3-N besides DTC. Compared with widely used support vector machine (SVM) models and multiple linear regression (MLR) models, the MARS model has better statistical significance with greater R values and smaller RMSE and MAPE values, which indicated that the MARS model is a better way to approximate the cost for DWWTPs.

Highlights

  • In this paper, to interpret the cost structure of decentralized wastewater treatment plants (DWWTPs) in rural regions, a simple nonparametric regression algorithm known as multivariate adaptive regression spline (MARS) was proposed and applied to simulate the construction cost (CC), operation and maintenance cost (OMC), and total cost (TC)

  • A MARS model is proposed for predicting the cost structure of DWWTPs

  • The model considers the effect of design treatment capacity (DTC), removal efficiency of chemical oxygen demand (RCOD), and RNH3 -N on CC, OMC, and TC

Read more

Summary

Introduction

To interpret the cost structure of decentralized wastewater treatment plants (DWWTPs) in rural regions, a simple nonparametric regression algorithm known as multivariate adaptive regression spline (MARS) was proposed and applied to simulate the construction cost (CC), operation and maintenance cost (OMC), and total cost (TC). In rural regions with limited budgets, the cost structure of wastewater treatment including construction cost (CC), operating and maintenance cost (OMC), and total cost (TC) require better understanding to help create economically feasible water quality management programs in the future, and to help in the planning of wastewater treatment plants [4,5,6]. Cost structures of municipal wastewater treatment plants (MWWTPs) were studied in lots of literatures, and wastewater treatment capacity was the primary consideration. Regression methods, such as simple linear regression, multiple linear regression, non-linear regression were applied to evaluate the relationship between treatment capacity and treatment cost [4,7]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.