Abstract

A method to simulate rolling contact wear in a rail surface was developed using the finite elements method and numerical analysis. A two-dimensional finite elements model was used in order to reduce the calculation time and boundary conditions to prevent excessive deformation of a wheel and a rail were applied. A numerical analysis of rail wear at rolling contact was predicted using the Archards equation. In addition, the characteristics of rail wear with the increasing speed of vehicle were analyzed. Results show that there was not a large difference in the depths of wear on the rail head with increasing vehicle speed, but the wear on the rail gauge corner increased with increasing vehicle speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.