Abstract

The literature describing neural network modelling to predict physicochemical properties of organic compounds from the molecular structure is reviewed from the perspective of pharmaceutical research. The standard three-layer, feed-forward neural network is the technique most frequently used, although the use of other techniques is increasing. Various approaches to describe the molecular structure have been successfully used, including molecular fragments, topological indices, and descriptors calculated by semi-empirical quantum chemical methods. Some physicochemical properties, such as octanol–water partition coefficient, water solubility, boiling point and vapour pressure, have been modelled by several research groups over the years using different approaches and structurally diverse large training sets. The prediction accuracy of most models seems to be rather close to the performance of the experimental measurements, when the accuracy is assessed with a test set from the working database. Results with independent test sets have been less satisfactory. Implications of this problem are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.