Abstract
Selecting peptides that bind strongly to the major histocompatibility complex (MHC) for inclusion in a vaccine has therapeutic potential for infections and tumors. Machine learning models trained on sequence data exist for peptide:MHC (p:MHC) binding predictions. Here, we train support vector machine classifier (SVMC) models on physicochemical sequence-based and structure-based descriptor sets to predict peptide binding to a well-studied model mouse MHC I allele, H-2Db. Recursive feature elimination and two-way forward feature selection were also performed. Although low on sensitivity compared to the current state-of-the-art algorithms, models based on physicochemical descriptor sets achieve specificity and precision comparable to the most popular sequence-based algorithms. The best-performing model is a hybrid descriptor set containing both sequence-based and structure-based descriptors. Interestingly, close to half of the physicochemical sequence-based descriptors remaining in the hybrid model were properties of the anchor positions, residues 5 and 9 in the peptide sequence. In contrast, residues flanking position 5 make little to no residue-specific contribution to the binding affinity prediction. The results suggest that machine-learned models incorporating both sequence-based descriptors and structural data may provide information on specific physicochemical properties determining binding affinities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - General Subjects
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.