Abstract

In petroleum engineering, accurately predicting particle settling velocity during various stages of a well’s life cycle is vital. This study focuses on settling velocities of both spherical and non-spherical particles in Newtonian and non-Newtonian fluids. Utilizing a dataset of 931 experimental observations, an artificial neural network (ANN) model with a 7-42-1 architecture is developed (one input layer, one hidden layer with 42 neurons, and one output layer). This model effectively incorporates particle settling orientation and the inclusion of the settling area ratio, enhancing its predictive accuracy. Achieving an average absolute relative error (AARE) of 8.51%, the ANN model surpasses traditional empirical correlations for settling velocities in both Newtonian and power-law fluids. Key influencing factors, such as the consistency index and particle equivalent diameter, were identified. This approach in ANN model construction and data analysis represents a significant advancement in understanding particle dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.