Abstract

The emergence of drug-resistant lice, acari, and their associated pathogens (APs) is associated with economic losses; thus, it is essential to find new appropriate therapeutic approaches. In the present study, a subtractive proteomics approach was used to predict suitable therapeutics against these vectors and their infectious agents. We found 9701 proteins in the lice (Pediculus humanus var. corporis) and acari (Ixodes scapularis, Leptotrombidium deliense), and 4822 proteins in the proteomes of their APs (Babesia microti, Borreliella mayonii, Borrelia miyamotoi, Borrelia recurrentis, Rickettsia prowazekii, Orientia tsutsugamushi str. Boryong) that were non-homologous to host proteins. Among these non-homologous proteins, 365 proteins of lice and acari, and 630 proteins of APs, were predicted as essential proteins. Twelve unique essential proteins were predicted to be involved in four unique metabolic pathways of lice and acari, and 103 unique proteins were found to be involved in 75 unique metabolic pathways of APs. The sub cellular localization analysis of 115 unique essential proteins of lice and acari and their APs revealed that 61 proteins were cytoplasmic, 42 as membrane-bound proteins and 12 proteins with multiple localization. The druggability analysis of the identified 73 cytoplasmic and multiple localization essential proteins revealed 22 druggable targets and 51 novel drug targets that participate in unique pathways of lice and acari and their APs. Further, the predicted 42 membrane bound proteins could be potential vaccine candidates. Screening of useful inhibitors against these novel targets may result in finding novel compounds efficient for the control of these parasites.

Highlights

  • Vector-borne pathogens endure in nature by implementing various arthropods as hosts

  • The retrieved non-redundant dataset was comprised of 14,618 proteins for I. scapularis while 9726, 11,328, 3363, 922, 906, 890, 772, and 731 proteins for P. humanus var. corporis, L. deliense, B. microti, B. mayonii, B. miyamotoi, B. recurrentis, R. prowazekii, and O. tsutsugamushi str

  • The non-redundant dataset was submitted to BLASTp against the host to filter the proteins that did not have any resemblance to the host proteins (H. sapiens) [30,49]

Read more

Summary

Introduction

Vector-borne pathogens endure in nature by implementing various arthropods as hosts. Several of these agents have been found increasing in distribution to novel areas due to global warming and anthropogenic events have endorsed promising environments for the persistence and proliferation of these agents. Predatory mites can be employed to reduce herbivorous mites, but parasitic mites and ticks cause skin irritations, stress, and decreased production of meat, milk, wool, and leather. These vectors and vectors-borne parasites are harmful to humans and animals health [5,6,7,8,9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.