Abstract

Unlike the explosion limit of liquid fuel vapour, the explosion limit of aerosol is a function of the aerosol state. In this study, a prediction model of the lower explosion limit (LEL) of liquid fuel aerosol was established through theoretical analysis, and typical liquid fuels of n-heptane and n-hexane were used to observe the aerosol state and the lower explosion concentration limits in the experiments to verify the reliability of the established model for predicting the LEL of aerosol. The predicted LELs of the two n-heptane aerosols (D 32 = 12.16 µm) and (D 32 = 21.23 µm) are 3.59 and 3.62 times of that of n-heptane vapour, respectively. The relative errors for the predictive results are 5.4% and 8.8%, respectively, compared with the experimental results. The predicted LEL of n-hexane aerosol (D 32 = 18.51 µm) is 3.5 times that of n-hexane vapour, and the relative error is 3.99% compared with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.