Abstract

This paper presents innovative algorithms combining Jaya optimizer, salp swarm algorithms and (least-squares) support vector machines for simulating the temperature effect accurately in dam health monitoring modeling. The temperature effect is simulated by different variable sets of air temperature to get a reasonable choice. The proposed long-term air temperature based support vector machines algorithms are verified on monitoring data of a concrete gravity dam. Results confirm the ability of the proposed hybrid strategies to efficiently mine the effect of air temperature on dam behavior. The proposed approach based on direct air temperature observation can result in significant reduction in prediction errors of the dam displacements. The proposed method is tested on a concrete gravity dam and it is expected to be further tested on concrete arch dams in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.