Abstract
Pick-up and galling due to lubricant film breakdown is a severe limitation in cold forming of tribologically difficult metals like stainless steel and aluminium. The present paper describes a method of combined experimental and numerical analysis to quantify the limits of lubrication in a dedicated simulative strip reduction test. The limit of lubrication is quantified as the threshold drawing length before galling occurs. A numerical model of the test is established calculating tool/work piece interface temperatures and normal pressures. Identifying a critical maximum value of the interface temperature the results show good agreement between numerically predicted and experimentally observed threshold drawing lengths at different test conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.