Abstract
Significant inter-individual variability of exposure for CYP2C19 substrates may be only partly due to genetic polymorphism. Therefore, the in vivo inter-individual variability in hepatic intrinsic clearance (CL(int,h)) of CYP2C19 substrates was estimated from reported AUC values using Monte Carlo simulations. The coefficient of variation (CV) for CL(int,h) in poor metabolizers (PM) expected from genotypes CYP2C19*2/*2, CYP2C19*3/*3 or CYP2C19*2/*3 was estimated as 25.8% from the CV for AUC of omeprazole in PMs. With this, CVs of CL(int,h) in extensive metabolizers (EM: CYP2C19*1/*1), intermediate metabolizers (IM: CYP2C19*1/*2 or *3) and ultra-rapid metabolizers (UM), CYP2C19*17/*17 and *1/*17, were estimated as 66.0%, 55.8%, 6.8% and 48.0%, respectively. To validate these CVs, variability in the AUC of CYP2C19 substrates lansoprazole and rabeprazole, partially metabolized by CYP3A4 in EMs and IMs, were simulated using the CV in CL(int,h) for CYP2C19 EMs and IMs and 33% of the CV previously reported for CYP3A4. Published values were within 2.5-97.5 percentile range of simulated CVs for the AUC. Furthermore, simulated CVs for the AUC of omeprazole and lansoprazole in ungenotyped populations were comparable with published values. Thus, estimated CL(int,h) variability can predict variability in the AUC of drugs metabolized not only by CYP2C19 but also by multiple enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.