Abstract
ObjectiveIn the application of machine learning to the prediction of hypertension, many factors have seriously affected the classification accuracy and generalization performance. We propose a pulse wave classification model based on multi-feature fusion for accuracy prediction of hypertension. Methods and MaterialsWe propose an ensemble under-sampling model with dynamic weights to decrease the influence of class imbalance on classification, further to automatically classify of hypertension on inquiry diagnosis. We also build a deep learning model based on hybrid attention mechanism, which transforms pulse waves to feature maps for extraction of in-depth features, so as to automatically classify hypertension on pulse diagnosis. We build the multi-feature fusion model based on dynamic Dempster/Shafer (DS) theory combining inquiry diagnosis and pulse diagnosis to enhance fault tolerance of prediction for multiple classifiers. In addition, this study calculates feature importance ranking of scale features on inquiry diagnosis and temporal and frequency-domain features on pulse diagnosis. ResultsThe accuracy, sensitivity, specificity, F1-score and G-mean after 5-fold cross-validation were 94.08%, 93.43%, 96.86%, 93.45% and 95.12%, respectively, based on the hypertensive samples of 409 cases from Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine and Hospital of Integrated Traditional Chinese and Western Medicine. We find the key factors influencing hypertensive classification accuracy, so as to assist in the prevention and clinical diagnosis of hypertension. ConclusionCompared with the state-of-the-art models, the multi-feature fusion model effectively utilizes the patients’ correlated multimodal features, and has higher classification accuracy and generalization performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.