Abstract

The objectives of this paper are to introduce time-spectral computational fluid dynamics (CFD) for the analysis of helicopter rotor flows in level flight and to introduce an exact fluid–structure interface for coupled CFD/computational structural dynamics (CSD) analysis. The accuracy and efficiency of time-spectral CFD are compared with conventional time-marching computations. The exact interface is equipped with an exact delta coupling procedure that bypasses the requirement for sectional airloads. Predicted loads are compared between time-spectral and time-marching CFD using both interfaces and validated using UH-60A flight data for high-vibration and dynamic stall conditions. It is concluded that time-spectral CFD can indeed predict rotor performance and peak-to-peak structural loads efficiently, and hence, open opportunity for blade shape optimization. The vibratory and dynamic stall loads, however, require a large number of time instances, which reduces its efficiency. The exact interface and delta procedure allow coupling to be implemented for arbitrary grids and advanced structural models exactly, without the requirement for two-dimensional sectional airloads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.