Abstract

Fetal weight is an important index to judge fetal development and ensure the safety of pregnant women. However, fetal weight cannot be directly measured. This study proposed a prediction model of fetal weight based on genetic algorithm to optimize back propagation (GA-BP) neural network. Using random number table method, 80 cases of pregnant women in our hospital from September 2018 to March 2019 were divided into control group and observation group, 40 cases in each group. The doctors in the control group predicted the fetal weight subjectively according to routine ultrasound and physical examination. In the observation group, the continuous weight change model of pregnant women was established by using the regression model and the historical physical examination data obtained by feature normalization pretreatment, and then the genetic algorithm (GA) was used to optimize the initial weights and thresholds of back propagation (BP) neural network to establish the fetal weight prediction model. The coincidence rate of fetal weight was compared between the two groups after birth. Results: The prediction error of GA-BPNN was controlled within 6%. And the accuracy of GA-BPNN was 76.3%, which were 14.5% higher than that of traditional methods. According to the error curve, GA-BP is more effective in predicting the actual fetal weight. Conclusion: The GA-BPNN model can accurately and quickly predict fetal weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.