Abstract

An empirical model for prediction of energy consumption in a distribution system is described. The model resembles a normalized radial basis function neural network whose neurons contain prototype joint data about the consumption process and the environment. A set of prototype patterns of consumption and environmental variables is formed from a record of a multi-component time series by a self-organized process. Prediction of energy consumption is performed by a conditional average estimator based upon known prototype patterns and given future values of environmental variables. Importance of these variables for the prediction is determined by a genetic algorithm. Prediction performance of the model is tested on a one-year-long consumption record of a gas distribution system. Prediction error is determined by the difference between predicted and actually observed consumption. Its value depends on time and amounts to a few percent of the actual consumption. The probability distribution of prediction error is estimated from a properly selected time interval of prediction. This distribution can be used to estimate the risk of energy demand beyond some prescribed value. For an optimization of the distribution process, a cost function that includes operation and control costs of a distribution system as well as penalties related to excess energy demand is proposed. Its minimum corresponds to an economically optimal energy distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.